Issue 3, 2013

Research-based design and development of a simulation of liquid–vapor equilibrium

Abstract

Helping learners to visualize the structures and dynamics of particles through the use of technology is challenging. Animations and simulations can be difficult for learners to interpret and can even lead to new misconceptions. A systematic approach to development based on the findings of cognitive science was used to design, develop, and evaluate a simulation of physical equilibrium that addresses learner needs and misconceptions. Findings from a research study involving 45 chemistry instructors and 94 students were used to design and develop a dynamic computer simulation of liquid–vapor equilibrium that can be viewed at both macroscopic and submicroscopic levels. In the first stage of the process, mental models of the instructors and students were elicited by an open-ended questionnaire. Next, a selected group of participants were interviewed while viewing two dynamic animations of physical equilibrium. Based on these research findings, a dynamic simulation of liquid–vapor equilibrium was designed and developed. The simulation underwent several evaluation and revision steps that involved both experts and students. The final version of the simulation was implemented with a new group of 191 students. It was found to be effective in improving students' understanding of dynamic equilibrium and was well received by them.

Article information

Article type
Paper
Submitted
03 Jan 2013
Accepted
16 Apr 2013
First published
29 May 2013

Chem. Educ. Res. Pract., 2013,14, 324-344

Research-based design and development of a simulation of liquid–vapor equilibrium

S. Akaygun and L. L. Jones, Chem. Educ. Res. Pract., 2013, 14, 324 DOI: 10.1039/C3RP00002H

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements