Issue 7, 2015

Improved photocatalytic activity in RuO2–ZnO nanoparticulate heterostructures due to inhomogeneous space charge effects

Abstract

New 2–6 wt% RuO2–ZnO heterojunction nanocatalysts were synthesized by a straightforward two-step procedure. They were composed of a porous network of aggregated 25 nm wurtzite ZnO nanocrystallites modified with RuO2 and showed enhanced light absorption in the visible region due to surface plasmon resonance. In order to investigate the energetic structure of the photocatalyst XPS core line and valence band spectra of in situ in UHV prepared heterointerfaces were compared to results obtained from the particles. The shift of Zn 2p3/2 and O 1s core level spectra was determined to be at least 0.80 ± 0.05 eV for the in situ prepared heterojunction whereas it was found to be 0.40 ± 0.05 and 0.45 ± 0.05 eV, respectively, in the photocatalysts. The different values were ascribed to the reduced size of the particles and the different measurability of band bending at the interface of the heterojunction RuO2–ZnO compared to the nanoparticles. The RuO2/ZnO photocatalysts showed higher photocatalytic activity and recyclability than pure ZnO for the degradation of various dyes under UV light irradiation due to vectorial charge separation of photogenerated electrons and holes resulting from internal electric field, the ruthenium oxide acting as a quasi-metallic contact.

Graphical abstract: Improved photocatalytic activity in RuO2–ZnO nanoparticulate heterostructures due to inhomogeneous space charge effects

Supplementary files

Article information

Article type
Paper
Submitted
20 Oct 2014
Accepted
09 Jan 2015
First published
12 Jan 2015

Phys. Chem. Chem. Phys., 2015,17, 5090-5102

Author version available

Improved photocatalytic activity in RuO2–ZnO nanoparticulate heterostructures due to inhomogeneous space charge effects

Md. T. Uddin, Y. Nicolas, C. Olivier, L. Servant, T. Toupance, S. Li, A. Klein and W. Jaegermann, Phys. Chem. Chem. Phys., 2015, 17, 5090 DOI: 10.1039/C4CP04780J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements