Issue 8, 2014

Molybdenum phosphide as an efficient electrocatalyst for the hydrogen evolution reaction

Abstract

Electrochemical production of hydrogen from water has been directed to the search for non-noble metal based and earth-abundant catalysts. In this work, we propose a novel cost-effective catalyst, molybdenum phosphide that exhibits high activity towards the hydrogen evolution reaction (HER) in both acid and alkaline media even in bulk form. Comparative analysis of Mo, Mo3P and MoP as catalysts for HER clearly indicates that phosphorization can potentially modify the properties of the metal and different degrees of phosphorization lead to distinct activities and stabilities. Theoretical calculations by density functional theory also show that a simple phosphorization of molybdenum to form MoP introduces a good ‘H delivery’ system which attains nearly zero binding to H at a certain H coverage. With the combination of experimental results and theoretical calculations, this work has enlightened a new way of exploring cost-effective catalysts for HER.

Graphical abstract: Molybdenum phosphide as an efficient electrocatalyst for the hydrogen evolution reaction

Supplementary files

Article information

Article type
Communication
Submitted
25 Mar 2014
Accepted
28 May 2014
First published
29 May 2014
This article is Open Access
Creative Commons BY-NC license

Energy Environ. Sci., 2014,7, 2624-2629

Author version available

Molybdenum phosphide as an efficient electrocatalyst for the hydrogen evolution reaction

P. Xiao, M. A. Sk, L. Thia, X. Ge, R. J. Lim, J. Wang, K. H. Lim and X. Wang, Energy Environ. Sci., 2014, 7, 2624 DOI: 10.1039/C4EE00957F

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements