Issue 9, 2014

Structural characterization of dissolved organic matter: a review of current techniques for isolation and analysis

Abstract

Natural dissolved organic matter (DOM) in aquatic systems plays many environmental roles: providing building blocks and energy for aquatic biota, acting as a sunscreen in surface water, and interacting with anthropogenic compounds to affect their ultimate fate in the environment. Such interactions are a function of DOM composition, which is difficult to ascertain due to its heterogeneity and the co-occurring matrix effects in most aquatic samples. This review focuses on current approaches to the chemical structural characterization of DOM, ranging from those applicable to bulk samples and in situ analyses (UV-visible spectrophotometry and fluorescence spectroscopy) through the concentration/isolation of DOM followed by the application of one or more analytical techniques, to the detailed separation and analysis of individual compounds or compound classes. Also provided is a brief overview of the main techniques used to characterize isolated DOM: mass spectrometry (MS), nuclear magnetic resonance mass spectrometry (NMR) and Fourier transform infrared spectroscopy (FTIR).

Graphical abstract: Structural characterization of dissolved organic matter: a review of current techniques for isolation and analysis

Associated articles

Article information

Article type
Critical Review
Submitted
29 Jan 2014
Accepted
17 Mar 2014
First published
17 Mar 2014

Environ. Sci.: Processes Impacts, 2014,16, 2064-2079

Author version available

Structural characterization of dissolved organic matter: a review of current techniques for isolation and analysis

E. C. Minor, M. M. Swenson, B. M. Mattson and A. R. Oyler, Environ. Sci.: Processes Impacts, 2014, 16, 2064 DOI: 10.1039/C4EM00062E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements