Issue 1, 2015

808 nm driven Nd3+-sensitized upconversion nanostructures for photodynamic therapy and simultaneous fluorescence imaging

Abstract

The in vivo biological applications of upconversion nanoparticles (UCNPs) prefer excitation at 700–850 nm, instead of 980 nm, due to the absorption of water. Recent approaches in constructing robust Nd3+ doped UCNPs with 808 nm excitation properties rely on a thick Nd3+ sensitized shell. However, for the very important and popular Förster resonance energy transfer (FRET)-based applications, such as photodynamic therapy (PDT) or switchable biosensors, this type of structure has restrictions resulting in a poor energy transfer. In this work, we have designed a NaYF4:Yb/Ho@NaYF4:Nd@NaYF4 core–shell–shell nanostructure. We have proven that this optimal structure balances the robustness of the upconversion emission and the FRET efficiency for FRET-based bioapplications. A proof of the concept was demonstrated for photodynamic therapy and simultaneous fluorescence imaging of HeLa cells triggered by 808 nm light, where low heating and a high PDT efficacy were achieved.

Graphical abstract: 808 nm driven Nd3+-sensitized upconversion nanostructures for photodynamic therapy and simultaneous fluorescence imaging

Supplementary files

Article information

Article type
Paper
Submitted
26 Aug 2014
Accepted
27 Oct 2014
First published
03 Nov 2014

Nanoscale, 2015,7, 190-197

Author version available

808 nm driven Nd3+-sensitized upconversion nanostructures for photodynamic therapy and simultaneous fluorescence imaging

D. Wang, B. Xue, X. Kong, L. Tu, X. Liu, Y. Zhang, Y. Chang, Y. Luo, H. Zhao and H. Zhang, Nanoscale, 2015, 7, 190 DOI: 10.1039/C4NR04953E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements