Issue 109, 2014

Joining of SiO2–BN ceramic to Nb using a CNT-reinforced brazing alloy

Abstract

Brazing SiO2–BN ceramics with Nb are often associated with the problems of high residual stress caused by the difference in the thermal expansion coefficients and poor mechanical properties under high temperature. To overcome these problems, here we report a new type of carbon nanotube (CNT)-reinforced TiNi brazing alloy via an “in situ growth” method by PECVD. The CNT/TiNi brazing alloy has very homogeneously dispersed CNTs within the TiNi brazing alloy, produced by in situ growth of CNTs on TiH2 and Ni powders mixed evenly into the CNT/TiH2 powders. It can be applied in the brazing of SiO2–BN and Nb. Results show that the addition of CNTs into the TiNi brazing alloy is very beneficial for the dissolution and diffusion of Nb in the brazed joint, because it can promote more TiNi–(Nb,Ti) eutectics which emerge in most of the brazing seam. Furthermore, the average shear strength of the brazed joint at room temperature is raised from 49 to 85 MPa with 1.5 vol% CNTs added into the TiNi brazing alloy. In particular, at 800 °C the brazed joint still has a very high shear strength of 51 MPa, about 1.7 times stronger than that of the TiNi brazing alloy. These results suggest that the CNTs played a key role in reducing the residual stress and reinforcing the mechanical properties (at both room and high temperature) of the brazed joint. It provides a way for the development of CNT-reinforced brazing alloys.

Graphical abstract: Joining of SiO2–BN ceramic to Nb using a CNT-reinforced brazing alloy

Article information

Article type
Paper
Submitted
24 Sep 2014
Accepted
11 Nov 2014
First published
11 Nov 2014

RSC Adv., 2014,4, 64238-64243

Author version available

Joining of SiO2–BN ceramic to Nb using a CNT-reinforced brazing alloy

J. L. Qi, J. H. Lin, Y. H. Wan, L. X. Zhang, J. Cao and J. C. Feng, RSC Adv., 2014, 4, 64238 DOI: 10.1039/C4RA11110A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements