Issue 46, 2014

The temperature-dependent microstructure of PEDOT/PSS films: insights from morphological, mechanical and electrical analyses

Abstract

Poly(3,4-ethylenedioxythiophene)/poly(styrenesulfonate) (PEDOT/PSS) is a widely used conductive polymer in the field of flexible electronics. The ways its microstructure changes over a broad range of temperatures remain unclear. This paper describes microstructure changes at different temperatures and correlates the microstructure with its physical properties (mechanical and electrical). We used High-Angle Annular Dark-Field Scanning Electron Microscopy (HAADF-STEM) combined with electron energy loss spectroscopy (EELS) to determine the morphology and elemental atomic ratio of the film at different temperatures. These results together with the Atomic Force Microscopy (AFM) analysis provide the foundation for a model of how the temperature affects the microstructure of PEDOT/PSS. Moreover, dynamic mechanical analysis (DMA) and electrical characterization were performed to analyze the microstructure and physical property correlations.

Graphical abstract: The temperature-dependent microstructure of PEDOT/PSS films: insights from morphological, mechanical and electrical analyses

Supplementary files

Article information

Article type
Paper
Submitted
21 Jul 2014
Accepted
24 Sep 2014
First published
24 Sep 2014

J. Mater. Chem. C, 2014,2, 9903-9910

Author version available

The temperature-dependent microstructure of PEDOT/PSS films: insights from morphological, mechanical and electrical analyses

J. Zhou, D. H. Anjum, L. Chen, X. Xu, I. A. Ventura, L. Jiang and G. Lubineau, J. Mater. Chem. C, 2014, 2, 9903 DOI: 10.1039/C4TC01593B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements