Issue 9, 2015

K2Ln(PO4)(WO4):Tb3+,Eu3+ (Ln = Y, Gd and Lu) phosphors: highly efficient pure red and tuneable emission for white light-emitting diodes

Abstract

A novel phosphate/tungstate family, K2Ln(PO4)(WO4) (Ln = Y, Gd and Lu) doped with Tb3+ and Eu3+ is synthesized via a conventional high-temperature solid-state reaction to explore new pure red phosphors with high critical concentration for white light-emitting diodes (WLEDs). The results from the Rietveld method show that the crystal structures of the hosts are composed of phosphate layers and tungstate zigzags, and the Ln3+–Ln3+-units are isolated by the [PO4]3− groups in phosphate layers. The critical concentration of Tb3+ and Eu3+ is up to 40–50% in the singly doped phosphors, which is ascribed to the interaction of the isolated Ln3+ ions being mitigated by [PO4]3− and [WO4]2− groups, such that the special structure of K2Ln(PO4)(WO4) helps the interaction of luminescence centres. The energy transfer from Tb3+ to Eu3+ in K2Ln(PO4)(WO4) is demonstrated by fluorescence decay times. By adjusting the ratio of Eu3+ and Tb3+, we can tune the emission colour of K2Ln(PO4)(WO4):Tb3+,Eu3+ from green to yellow, orange and pure red. For K2Tb0.5Eu0.5(PO4)(WO4), the internal quantum efficiency is as high as 76.45% under an excitation of 394 nm, and the emission intensity at 150 °C is 92.2% of that at 25 °C.

Graphical abstract: K2Ln(PO4)(WO4):Tb3+,Eu3+ (Ln = Y, Gd and Lu) phosphors: highly efficient pure red and tuneable emission for white light-emitting diodes

Supplementary files

Article information

Article type
Paper
Submitted
22 Oct 2014
Accepted
10 Dec 2014
First published
10 Dec 2014

J. Mater. Chem. C, 2015,3, 2107-2114

Author version available

K2Ln(PO4)(WO4):Tb3+,Eu3+ (Ln = Y, Gd and Lu) phosphors: highly efficient pure red and tuneable emission for white light-emitting diodes

D. Wen, J. Feng, J. Li, J. Shi, M. Wu and Q. Su, J. Mater. Chem. C, 2015, 3, 2107 DOI: 10.1039/C4TC02406K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements