Issue 27, 2015

Structural stability and polarisation of ionic liquid films on silica surfaces

Abstract

We used molecular dynamics simulations to investigate the effect of disorder of the hydroxylated amorphous silica surface on the structure of 8 nm IL films formed from two ionic liquids featuring the same cation 1-butyl-3-methyl-imidazolium or [BMIM], paired with bis(trifluoromethanesulphonyl)amide [NTF2] and tetrafluoroborate [BF4] anions. Several silica surfaces were modelled to estimate the effect of their atomic-scale configuration on the solid–liquid interface and the results are compared to those simulated on the crystalline cristobalite surface. Using strongly polar surfaces, we could also evaluate the response of the ILs to the electric field externally controlled or generated by charged defects in the silica film. We found that the structure of the liquids becomes weaker away from the interface and more susceptible to electric field. Our simulations show that [BMIM][BF4] has a large intrinsic dipole originating at the interface, resilient to external fields, while the polarisation of [BMIM][NTF2] can be more easily controlled.

Graphical abstract: Structural stability and polarisation of ionic liquid films on silica surfaces

Supplementary files

Article information

Article type
Paper
Submitted
20 Apr 2015
Accepted
27 May 2015
First published
04 Jun 2015

Phys. Chem. Chem. Phys., 2015,17, 17661-17669

Structural stability and polarisation of ionic liquid films on silica surfaces

F. Federici Canova, M. Mizukami, T. Imamura, K. Kurihara and A. L. Shluger, Phys. Chem. Chem. Phys., 2015, 17, 17661 DOI: 10.1039/C5CP02299A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements