Issue 13, 2016

Theoretical study about Mo2C(101)-catalyzed hydrodeoxygenation of butyric acid to butane for biomass conversion

Abstract

In order to understand the conversion mechanism of fatty acids to long-chain alkanes using molybdenum carbide as a catalyst, the full potential energy surface of the hydrogenation of butyric acid to butane on the H-pre-covered hexagonal Mo2C(101) surface has been systematically computed on the basis of density functional theory including dispersion (PBE-D3) and zero-point energy corrections. The first step of the reaction is butyric acid dissociation into surface OH and acyl [R-COOH + H = R-CO + OH + H], followed by the formation of butanal from acyl hydrogenation [R-CO + OH + H = R-CHO + OH]. The second step of the reaction is butanal hydrogenation into butanol via the surface butoxyl intermediate [R-CHO + H + OH = R-CH2O + OH; R-CH2O + H + OH = R-CH2OH + OH]. The third step is butanol dissociation into surface OH and butyl [R-CH2OH + H = R-CH2 + OH + H], which is further hydrogenated into butane [R-CH2 + H + OH = R-CH3 + OH]. The formation of butanal and butanol as intermediates in equilibrium as well as butane as the final product is in full agreement with the experiment of stearic acid hydrodeoxygenation into octadecane. For the conversion, butanol dissociation [R-CH2OH + H = R-CH2 + OH + H] has the highest barrier and represents the rate-determining step. It is noted that the metallic Mo2C(001) surface can bind surface H2O, OH and O much more strongly than the Mo2C(101) surface with exposed Mo and C atoms (C/Mo = 1). Since our results are obtained only from the most stable Mo2C(101) surface, they cannot correlate with the whole experimentally observed reactivity and selectivity of different Mo2C phases with different surface terminations. Nevertheless, our results provide the basis for exploring the intrinsic nature of Mo2C catalysts in deoxygenation of oxygenates involved in the refining of biomass-derived oils.

Graphical abstract: Theoretical study about Mo2C(101)-catalyzed hydrodeoxygenation of butyric acid to butane for biomass conversion

Supplementary files

Article information

Article type
Paper
Submitted
23 Nov 2015
Accepted
26 Feb 2016
First published
26 Feb 2016

Catal. Sci. Technol., 2016,6, 4923-4936

Theoretical study about Mo2C(101)-catalyzed hydrodeoxygenation of butyric acid to butane for biomass conversion

Y. Shi, Y. Yang, Y. Li and H. Jiao, Catal. Sci. Technol., 2016, 6, 4923 DOI: 10.1039/C5CY02008E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements