Issue 11, 2016

Synthesis of a rhodium(i) germyl complex: a useful tool for C–H and C–F bond activation reactions

Abstract

The dihydrido germyl complex cis,fac-[Rh(GePh3)(H)2(PEt3)3] (2) was synthesized by an oxidative addition of HGePh3 at [Rh(H)(PEt3)3] (1). Treatment of 2 with neohexene generated the rhodium(I) germyl complex [Rh(GePh3)(PEt3)3] (3). Alternatively, treatment of the methyl complex [Rh(CH3)(PEt3)3] (4) with HGePh3 furnished at room temperature also 3. Low-temperature NMR measurements revealed an initial formation of the oxidative addition product fac-[Rh(GePh3)(H)(CH3)(PEt3)3] (5), which transforms into the intermediate complex [Rh(GePh3)(H)(CH3)(PEt3)2] (6) by dissociation of a triethylphosphine ligand. The reductive elimination of methane and coordination of PEt3 afforded the germyl complex 3. Treatment of 3 with CO gave the biscarbonyl complex [Rh(GePh3)(CO)2(PEt3)2] (7). The molecular structures of the complexes 2, 3 and 7 were determined by X-ray crystallography. The germyl complex 3 reacted with 2,3,5,6-tetrafluoropyridine or pentafluorobenzene to furnish the C–H activation products [Rh(4-C5NF4)(PEt3)3] (8) and [Rh(C6F5)(PEt3)3] (9), respectively. The reaction of 3 with hexafluorobenzene or perfluorotoluene gave selectively the C–F activation products 9 and [Rh(4-C6F4CF3)(PEt3)3] (10). Treatment of 3 with pentafluoropyridine resulted in the formation of the C–F activation products 8 and [Rh(2-C5NF4)(PEt3)3] (11) in a 1 : 10 ratio. The two isomeric activation compounds [Rh{(E)-CF[double bond, length as m-dash]CF(CF3)}(PEt3)3] (12) and [Rh{(Z)-CF[double bond, length as m-dash]CF(CF3)}(PEt3)3] (13) were obtained in a 3 : 1 ratio by reaction of 3 with hexafluoropropene. On exposure to oxygen the highly air sensitive complex 12 reacts to yield the peroxido-bridged dirhodium complex [Rh{(E)-CF[double bond, length as m-dash]CF(CF3)}(μ–κ12-O2)(PEt3)2]2 (14). The molecular structure of 14 was determined by X-ray crystallography.

Graphical abstract: Synthesis of a rhodium(i) germyl complex: a useful tool for C–H and C–F bond activation reactions

Supplementary files

Article information

Article type
Paper
Submitted
11 Dec 2015
Accepted
02 Feb 2016
First published
10 Feb 2016

Dalton Trans., 2016,45, 4716-4728

Synthesis of a rhodium(I) germyl complex: a useful tool for C–H and C–F bond activation reactions

T. Ahrens, M. Ahrens, T. Braun, B. Braun and R. Herrmann, Dalton Trans., 2016, 45, 4716 DOI: 10.1039/C5DT04845A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements