Issue 14, 2015

Highly flexible, nonflammable and free-standing SiC nanowire paper

Abstract

Flexible paper-like semiconductor nanowire materials are expected to meet the criteria for some emerging applications, such as components of flexible solar cells, electrical batteries, supercapacitors, nanocomposites, bendable or wearable electronic or optoelectronic components, and so on. As a new generation of wide-bandgap semiconductors and reinforcements in composites, SiC nanowires have advantages in power electronic applications and nanofiber reinforced ceramic composites. Herein, free-standing SiC nanowire paper consisting of ultralong single-crystalline SiC nanowires was prepared through a facile vacuum filtration approach. The ultralong SiC nanowires were synthesized by a sol–gel and carbothermal reduction method. The flexible paper composed of SiC nanowires is ∼100 nm in width and up to several hundreds of micrometers in length. The nanowires are intertwisted with each other to form a three-dimensional network-like structure. SiC nanowire paper exhibits high flexibility and strong mechanical stability. The refractory performance and thermal stability of SiC nanowire paper were also investigated. The paper not only exhibits excellent nonflammability in fire, but also remains well preserved without visible damage when it is heated in an electric oven at a high temperature (1000 °C) for 3 h. With its high flexibility, excellent nonflammability, and high thermal stability, the free-standing SiC nanowire paper may have the potential to improve the ablation resistance of high temperature ceramic composites.

Graphical abstract: Highly flexible, nonflammable and free-standing SiC nanowire paper

Supplementary files

Article information

Article type
Paper
Submitted
03 Feb 2015
Accepted
08 Mar 2015
First published
09 Mar 2015

Nanoscale, 2015,7, 6374-6379

Highly flexible, nonflammable and free-standing SiC nanowire paper

J. Chen, X. Liao, M. Wang, Z. Liu, J. Zhang, L. Ding, L. Gao and Y. Li, Nanoscale, 2015, 7, 6374 DOI: 10.1039/C5NR00776C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements