Issue 42, 2015

A high-performance moisture sensor based on ultralarge graphene oxide

Abstract

This article describes the effect of the lateral size of graphene oxide (GO) on the humidity sensing properties of a GO-based sensor. The GO size effect on the humidity sensing performance was evaluated on gold electrodes drop-coated with either an ultralarge graphene oxide (UGO) sheet (lateral size = 47.4 ± 22.2 μm) or a small-sized graphene oxide (SGO) sheet (lateral size = 0.8 ± 0.5 μm). The in-plane conductance obtained from the UGO and SGO electrodes was found to increase by four orders of magnitude and by three orders of magnitude, respectively, upon exposure to relative humidity RH change from 7 to 100%. The maximal sensitivity (S) values of the UGO and SGO humidity sensors were determined to be SUGO = 4339 ± 433 and SSGO = 1982 ± 122. The GO size clearly influenced the overall proton conductivity, as evidenced by the activation enthalpy (Ea) required for proton conduction in UGO and SGO sheets: Ea (UGO) = 0.63 eV, Ea (SGO) = 1.14 eV. The UGO humidity sensor exhibited an excellent device performance with a high sensitivity and an ultrafast response/recovery time (0.2/0.7 s). Good humidity sensing stability was observed, with a variation of only ±4.6% over five days. The resistive-type UGO humidity sensor was capable of sensing the moisture on a fingertip at a distance of 0.5 mm with a sensitivity of 17.4 and a response/recovery time of 0.6 s/1.3 s. The excellent device performance of the UGO humidity sensor also permitted the determination of the position of a fingertip by detecting the fingertip moisture, hence offering a great potential for touchless display position interface applications.

Graphical abstract: A high-performance moisture sensor based on ultralarge graphene oxide

Supplementary files

Article information

Article type
Paper
Submitted
24 Aug 2015
Accepted
17 Sep 2015
First published
24 Sep 2015

Nanoscale, 2015,7, 17805-17811

Author version available

A high-performance moisture sensor based on ultralarge graphene oxide

B. Wee, W. Khoh, A. K. Sarker, C. Lee and J. Hong, Nanoscale, 2015, 7, 17805 DOI: 10.1039/C5NR05726D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements