Issue 57, 2015

Crystal engineering of ibuprofen using starch derivatives in crystallization medium to produce promising ibuprofen with improved pharmaceutical performance

Abstract

Ibuprofen exhibits poor flow, poor compaction and dissolution behaviour, and it is prone to capping after ejection from the die. Therefore, the aim of the present research was to engineer ibuprofen crystals in the presence of two disintegrants (starch and sodium starch glycolate) in order to improve its flow, compactibility and dissolution behaviour simultaneously. To this end ibuprofen and different concentrations of disintegrant (0.25 to 10% w/w in case of starch and 0.25 to 7% w/w in case of sodium starch glycolate) were dissolved in ethanol and water respectively. The ibuprofen solution was then added to the aqueous solutions containing the different concentrations of disintegrant. Ibuprofen precipitated within 10 min and the crystals were separated and dried for further studies. The obtained crystals were characterized in terms of flow, density, tablet hardness, dissolution behaviour and solid state. The results showed most of engineered ibuprofen to have better flow with a high compactibility. The results also showed that an increase in the concentration of starch in the crystallization medium resulted in a reduction in the hardness of ibuprofen tablets, but this was not the case for ibuprofen samples engineered in the presence of sodium starch glycolate. It is interesting to note that although engineered ibuprofen showed superior dissolution as compared to untreated ibuprofen, the highest concentration of starch (10%) or sodium starch glycolate (7%) slowed down the release remarkably due to an increase in the viscosity of the dissolution medium around drug particles. Solid state analysis (FT-IR, XRPD and DSC) ruled out the presence of different polymorphic forms and also any interaction between these disintegrants and ibuprofen. In conclusion, the engineering of ibuprofen in the presence of disintegrant showed how properties such as flow, compaction and dissolution behaviour can be simultaneously manipulated to suit a desired application.

Graphical abstract: Crystal engineering of ibuprofen using starch derivatives in crystallization medium to produce promising ibuprofen with improved pharmaceutical performance

Article information

Article type
Paper
Submitted
07 Apr 2015
Accepted
18 May 2015
First published
18 May 2015
This article is Open Access
Creative Commons BY-NC license

RSC Adv., 2015,5, 46119-46131

Author version available

Crystal engineering of ibuprofen using starch derivatives in crystallization medium to produce promising ibuprofen with improved pharmaceutical performance

A. Nokhodchi, A. Homayouni, R. Araya, W. Kaialy, W. Obeidat and K. Asare-Addo, RSC Adv., 2015, 5, 46119 DOI: 10.1039/C5RA06183K

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements