Issue 46, 2015

Effects of silicon on osteoclast cell mediated degradation, in vivo osteogenesis and vasculogenesis of brushite cement

Abstract

Calcium phosphate cements (CPCs) are being widely used for treating small scale bone defects. Among the various CPCs, brushite (dicalcium phosphate dihydrate, DCPD) cement is widely used due to its superior solubility and ability to form a new bone. In the present study, we have studied the physical, mechanical, osteoclast-like-cell differentiation and in vivo osteogenic and vasculogenic properties of silicon (Si) doped brushite cements. The addition of Si did not alter the phase composition of the final product and regardless of the Si level, all samples included β-tricalcium phosphate (β-TCP) and DCPD. 1.1 wt% Si addition increased the compressive strength of undoped brushite cement from 4.78 ± 0.21 MPa to 5.53 ± 0.53 MPa, significantly. Cellular activity was studied using a receptor activator of nuclear factor κβ ligand (RANKL) supplemented osteoclast-like-cell precursor RAW 264.7 cells. Phenotypic expressions of the cells confirmed successful differentiation of RAW 264.7 monocytes to osteoclast-like-cells on undoped and doped brushite cements. An increased activity of osteoclast-like cells was noticed due to Si doping in the brushite cement. An excellent new bone formation was found in all cement compositions, with significant increase in Si doped brushite samples as early as 4 weeks post implantation in a rat femoral model. After 4 weeks of implantation, no significant difference was found in blood vessel formation between the undoped and doped cements, however, a significant increase in vasculogenesis was found in 0.8 and 1.1 wt% Si doped brushite cements after 8 weeks. These results show the influence of the Si dopant on the physical, mechanical, in vitro osteoclastogenesis and in vivo osteogenic and vasculogenic properties of brushite cements.

Graphical abstract: Effects of silicon on osteoclast cell mediated degradation, in vivo osteogenesis and vasculogenesis of brushite cement

Supplementary files

Article information

Article type
Paper
Submitted
05 Jun 2015
Accepted
08 Sep 2015
First published
20 Oct 2015

J. Mater. Chem. B, 2015,3, 8973-8982

Effects of silicon on osteoclast cell mediated degradation, in vivo osteogenesis and vasculogenesis of brushite cement

S. Vahabzadeh, M. Roy and S. Bose, J. Mater. Chem. B, 2015, 3, 8973 DOI: 10.1039/C5TB01081K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements