Issue 22, 2016

Electrochemical deposition of highly-conducting metal dithiolene films

Abstract

Electrochemical deposition has been used to prepare a thin film of neutral 4′,4-(3-alkyl)-thiophene-5′,5-hydogen-nickel and copper dithiolenes (Ni–C2, Cu–C2). The application of molecular electrodeposition provides a means to solution process molecular semiconductors of poor solubility, which results from the strong intermolecular interaction required for charge transport. Both Ni–C2 and Cu–C2 form continuous thin films that show intense NIR absorptions, extending to 1800 nm and 2000 nm respectively giving evidence for the strong intermolecular interactions in the solid state. Both films are highly conducting and temperature dependence of resistance gave an activation energy of 0.42 eV and 0.072 eV respectively, with the near-metallic behaviour of Cu–C2 attributed to the additional presence of an unpaired electron.

Graphical abstract: Electrochemical deposition of highly-conducting metal dithiolene films

Supplementary files

Article information

Article type
Paper
Submitted
24 Mar 2016
Accepted
11 May 2016
First published
12 May 2016

Dalton Trans., 2016,45, 9363-9368

Author version available

Electrochemical deposition of highly-conducting metal dithiolene films

E. Allwright, G. Silber, J. Crain, M. M. Matsushita, K. Awaga and N. Robertson, Dalton Trans., 2016, 45, 9363 DOI: 10.1039/C6DT01166G

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements