Issue 10, 2016

Photomultiplication photodetectors with P3HT:fullerene-free material as the active layers exhibiting a broad response

Abstract

A series of polymer photodetectors (PPDs) are fabricated based on P3HT as an electron donor and fullerene-free material DC-IDT2T as an electron acceptor. The only difference among these PPDs is the P3HT:DC-IDT2T doping weight ratios from 2 : 1 to 150 : 1. The PPDs with P3HT:DC-IDT2T (100 : 1, w/w) as the active layers exhibit champion external quantum efficiency (EQE) of 28 000% and 4000% corresponding to 390 nm and 750 nm light illumination at −20 V bias, respectively. The photomultiplication (PM) phenomenon should be attributed to the enhanced hole tunneling injection due to the interfacial band bending, which is induced by the trapped electrons in DC-IDT2T near the Al cathode. The high EQE value in the long wavelength range is due to the effect of DC-IDT2T photon harvesting and exciton dissociation on the interfacial trap-assisted hole tunneling injection. Meanwhile, the PPDs with DC-IDT2T as the electron acceptor exhibit superior stability compared with the PPDs with PC71BM as the electron acceptor.

Graphical abstract: Photomultiplication photodetectors with P3HT:fullerene-free material as the active layers exhibiting a broad response

Supplementary files

Article information

Article type
Paper
Submitted
05 Jan 2016
Accepted
06 Feb 2016
First published
08 Feb 2016

Nanoscale, 2016,8, 5578-5586

Photomultiplication photodetectors with P3HT:fullerene-free material as the active layers exhibiting a broad response

W. Wang, F. Zhang, H. Bai, L. Li, M. Gao, M. Zhang and X. Zhan, Nanoscale, 2016, 8, 5578 DOI: 10.1039/C6NR00079G

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements