Issue 98, 2016, Issue in Progress

Methanol conversion on ZSM-22, ZSM-35 and ZSM-5 zeolites: effects of 10-membered ring zeolite structures on methylcyclopentenyl cations and dual cycle mechanism

Abstract

ZSM-22, ZSM-35 and ZSM-5, aluminosilicate zeolites possessing 10-membered ring channels, have been used in the present study as the catalysts of the MTO reaction. The diversities in dimensions and connection types of the 10-membered ring channels of the three zeolite catalysts make their performances in the MTO reaction quite different. As the key active species involved in the hydrocarbon-pool mechanism in the MTO reaction, methylcyclopentenyl cations (MCP+) and methylbenzenes have been captured by 13C MAS NMR and GC-MS over the three zeolite catalysts during methanol conversion. The comparative studies of the retained organics generation over the zeolite catalysts indicate that due to the spatial confinement effects of the inorganic frameworks, the retained organic species generated in the catalysts during the MTO reaction are influenced by both their sizes and amounts. A detailed analysis of the confined organic species showed the formation of MCP with varied methyl substitutions over the three zeolites. 12C/13C-methanol switch experiments were employed to investigate the reaction route for product generation. The differences in the participation levels of the methylbenzene and methylcyclopentadiene over the three zeolite catalysts imply that the formation and function of the organic species formed in the 10-membered ring channel were impacted by the chemical environment of the zeolites, and the methanol conversion that occurred in the 10-membered ring channels of the three zeolites also followed different reaction routes.

Graphical abstract: Methanol conversion on ZSM-22, ZSM-35 and ZSM-5 zeolites: effects of 10-membered ring zeolite structures on methylcyclopentenyl cations and dual cycle mechanism

Supplementary files

Article information

Article type
Paper
Submitted
06 Apr 2016
Accepted
19 Sep 2016
First published
19 Sep 2016

RSC Adv., 2016,6, 95855-95864

Methanol conversion on ZSM-22, ZSM-35 and ZSM-5 zeolites: effects of 10-membered ring zeolite structures on methylcyclopentenyl cations and dual cycle mechanism

M. Zhang, S. Xu, Y. Wei, J. Li, J. Chen, J. Wang, W. Zhang, S. Gao, X. Li, C. Wang and Z. Liu, RSC Adv., 2016, 6, 95855 DOI: 10.1039/C6RA08884H

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements