Issue 46, 2016

The compression of a heavy floating elastic film

Abstract

We study the effect of film density on the uniaxial compression of thin elastic films at a liquid–fluid interface. Using a combination of experiments and theory, we show that dense films first wrinkle and then fold as the compression is increased, similarly to what has been reported when the film density is neglected. However, we highlight the changes in the shape of the fold induced by the film's own weight and extend the model of Diamant and Witten [Phys. Rev. Lett., 2011, 107, 164302] to understand these changes. In particular, we suggest that it is the weight of the film that breaks the up-down symmetry apparent from previous models, but elusive experimentally. We then compress the film beyond the point of self-contact and observe a new behaviour dependent on the film density: the single fold that forms after wrinkling transitions into a closed loop after self-contact, encapsulating a cylindrical droplet of the upper fluid. The encapsulated drop either causes the loop to bend upward or to sink deeper as the compression is increased, depending on the relative buoyancy of the drop–film combination. We propose a model to qualitatively explain this behaviour. Finally, we discuss the relevance of the different buckling modes predicted in previous theoretical studies and highlight the important role of surface tension in the shape of the fold that is observed from the side—an aspect that is usually neglected in theoretical analyses.

Graphical abstract: The compression of a heavy floating elastic film

Supplementary files

Article information

Article type
Paper
Submitted
21 Apr 2016
Accepted
05 Oct 2016
First published
13 Oct 2016

Soft Matter, 2016,12, 9289-9296

The compression of a heavy floating elastic film

E. Jambon-Puillet, D. Vella and S. Protière, Soft Matter, 2016, 12, 9289 DOI: 10.1039/C6SM00945J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements