Issue 3, 2017

The effect of hexyl side chains on molecular conformations, crystal packing, and charge transport of oligothiophenes

Abstract

We report substituent effects on conformational preferences and hole mobilities of 2,5-bis-(thiophen-2-yl)thieno[3,2-b]thiophenes (BTTT) monomer and dimer, and hexyl derivatives. We employ single-crystal X-ray diffraction, quantum mechanical calculations, and thin-film transistors to explore the difference between monomer, dimer, and effect of hexyl substitution. The hexyl-substituted molecules show marked differences in solid-state packing compared to the unsubstituted analogs. Most notably, the alkylated monomer crystal structure exhibits terminal thiophenes in the syn conformation. In contrast, the unsubstituted monomer adopts the more common anti conformation. The hexyl-substituted dimer, however, features a mixture of syn and anti thiophenes. Gas phase conformations of oligomers rationalize the intrinsic conformational preferences. We use a multimode simulation to compute hole mobilities and find excellent agreement with experiment. Theoretical results support our hypothesis that alkyl side chains cause these small molecules to adopt orientations that enhance hole mobilities by an order of magnitude upon hexyl substitution of the monomer.

Graphical abstract: The effect of hexyl side chains on molecular conformations, crystal packing, and charge transport of oligothiophenes

Supplementary files

Article information

Article type
Paper
Submitted
25 Oct 2016
Accepted
22 Nov 2016
First published
23 Nov 2016

J. Mater. Chem. C, 2017,5, 582-588

The effect of hexyl side chains on molecular conformations, crystal packing, and charge transport of oligothiophenes

B. P. Cherniawski, S. A. Lopez, E. K. Burnett, I. Yavuz, L. Zhang, S. R. Parkin, K. N. Houk and A. L. Briseno, J. Mater. Chem. C, 2017, 5, 582 DOI: 10.1039/C6TC04612F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements