Issue 7, 2018

Zn-Porphyrin propped with hydantoin anchor: synthesis, photophysics and electron injection/recombination dynamics

Abstract

In this work, Zn-porphyrin with a hydantoin anchor (ZnPHy) was designed and synthesized for dye-sensitized solar cell (DSC) applications. The synthesized ZnPHy was well characterized using IR, NMR and mass spectral techniques, and satisfactory results were obtained. Cyclic voltammetry, UV-visible absorption, steady-state fluorescence, time-resolved fluorescence and transient absorption spectroscopic techniques were employed to elucidate the electrochemical and photophysical properties of ZnPHy. The obtained properties revealed that the synthesized ZnPHy can be used as a photosensitizer for DSC applications. The nature of ZnPHy binding onto the TiO2 surface was investigated using ATR-FTIR and UV-Vis absorption measurements. The amount of adsorbed ZnPHy on TiO2 surface was reasonably fit using the Langmuir adsorption isotherm, with a binding constant value of 1.03 × 105 M−1. Time-resolved measurements were used to elucidate the rate of electron injection and the regeneration and recombination kinetics for ZnPHy/TiO2 film. The ZnPHy showed a high electron injection rate with a ϕinj of 99%. Intriguingly, the rate of electron recombination is much slower than the rates reported for carboxyl-based Zn-porphyrins. Such a high electron injection and slow electron recombination rate are beneficial to produce long-lived electrical current in a photovoltaic device. Thus, the ZnPHy-sensitized TiO2 electrode showed the best photovoltaic performance, with the short-circuit photocurrent density (JSC), open-circuit voltage (VOC) and fill factor (ff) of 3.49 mA cm−2, 0.6 V and 0.52, respectively, yielding an overall conversion efficiency (η) of 1.01%. For comparison, the ZnCOOH-sensitized electrode was also fabricated under the same conditions and yielded the η value of 0.84%. Hence, the hydantoin moiety could be a potential alternative anchoring group for DSC applications.

Graphical abstract: Zn-Porphyrin propped with hydantoin anchor: synthesis, photophysics and electron injection/recombination dynamics

Supplementary files

Article information

Article type
Paper
Submitted
30 Oct 2017
Accepted
18 Jan 2018
First published
18 Jan 2018

Phys. Chem. Chem. Phys., 2018,20, 5117-5127

Zn-Porphyrin propped with hydantoin anchor: synthesis, photophysics and electron injection/recombination dynamics

P. Ram Kumar, E. M. Mothi, M. Ramesh and A. Kathiravan, Phys. Chem. Chem. Phys., 2018, 20, 5117 DOI: 10.1039/C7CP07326G

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements