Issue 19, 2017

Efficient and rapid transformation of high silica CHA zeolite from FAU zeolite in the absence of water

Abstract

High silica CHA zeolite plays an important role in selective catalytic reduction of NOx with NH3 (NH3-SCR), but its synthesis is not highly efficient due to the use of a relatively high-cost structural directing agent (SDA) N,N,N-trimethyl-adamantammonium hydroxide (TMAdaOH) and relatively long crystallization time under hydrothermal conditions. Herein, we report an efficient and rapid synthesis of a high silica CHA zeolite possessing good crystallinity and uniform crystals (CHA-ST). The method includes interzeolite transformation of high silica FAU zeolite in the absence of water but the presence of zeolite seeds and a bromide form of the SDA. The absence of water in the synthesis significantly improves the zeolite yield by avoiding dissolution of aluminosilicate species in aqueous media, while the addition of zeolite seeds remarkably enhances the crystallization rate under solvent-free conditions. In addition, this route allows the use of a low-cost bromide form of the SDA. Catalytic tests in the NH3-SCR show that copper-exchanged CHA-ST (Cu-CHA-ST) exhibits comparable catalytic properties to those of Cu-SSZ-13 obtained from the conventional hydrothermal route.

Graphical abstract: Efficient and rapid transformation of high silica CHA zeolite from FAU zeolite in the absence of water

Supplementary files

Article information

Article type
Paper
Submitted
26 Feb 2017
Accepted
04 Apr 2017
First published
10 Apr 2017

J. Mater. Chem. A, 2017,5, 9076-9080

Efficient and rapid transformation of high silica CHA zeolite from FAU zeolite in the absence of water

X. Xiong, D. Yuan, Q. Wu, F. Chen, X. Meng, R. Lv, D. Dai, S. Maurer, R. McGuire, M. Feyen, U. Müller, W. Zhang, T. Yokoi, X. Bao, H. Gies, B. Marler, D. E. De Vos, U. Kolb, A. Moini and F. Xiao, J. Mater. Chem. A, 2017, 5, 9076 DOI: 10.1039/C7TA01749A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements