Issue 4, 2019

Peptide-grafted dextran vectors for efficient and high-loading gene delivery

Abstract

Among various polymeric gene delivery systems, peptide-based vectors demonstrate great potential owing to their unique structure and properties, including flexibility; however, there is insufficient molecular understanding of the role and properties of amino acids as building blocks in gene delivery. In this work, we constructed a series of histidine (H)-containing peptide-grafted dextran (D-RxHy) vectors via a simple two-step reaction of dextran with five RxHyC peptides: R7H3C, R5H3C, R5H5C, R3H5C, and R3H7C. The gel electrophoresis study unveiled the DNA-binding ability of H residues. While all D-RxHy vectors possess similarly low cytotoxicity, D-R3H7 exhibited the highest gene transfection efficiency. Interestingly, at the low nitrogen to phosphate (N/P) ratio of 2, D-R3H7 displayed a 6–8-fold higher luciferase expression compared to the gold standard branched PEI (25k). D-R3H7 and D-R5H5 demonstrated favorable cell uptake rates. A chloroquine-treated transfection assay confirmed the key effect of the high buffering capacity of H-rich D-R3H7 on its high gene transfection efficiency, especially at low N/P ratios. The present work unveiled that histidine is critical for both DNA condensation and the accurate control of endosomal escape. The tunable D-RxHy platform not only demonstrates promising potential for therapeutic purposes but can also be used as a tool to elucidate the molecular mechanism of polymer-based transfection.

Graphical abstract: Peptide-grafted dextran vectors for efficient and high-loading gene delivery

Supplementary files

Article information

Article type
Paper
Submitted
23 Oct 2018
Accepted
10 Jan 2019
First published
25 Jan 2019

Biomater. Sci., 2019,7, 1543-1553

Author version available

Peptide-grafted dextran vectors for efficient and high-loading gene delivery

Y. Hu, H. Wang, H. Song, M. Young, Y. Fan, F. Xu, X. Qu, X. Lei, Y. Liu and G. Cheng, Biomater. Sci., 2019, 7, 1543 DOI: 10.1039/C8BM01341A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements