Issue 7, 2018

Honey protects against cisplatin-induced hepatic and renal toxicity through inhibition of NF-κB-mediated COX-2 expression and the oxidative stress dependent BAX/Bcl-2/caspase-3 apoptotic pathway

Abstract

The protective effects of both manuka and talh honeys were assessed using a rat model of cisplatin (CISP)-induced hepatotoxicity and nephrotoxicity. The results revealed that both honeys exerted a protective effect against CISP-induced hepatotoxicity and nephrotoxicity as demonstrated by decreasing liver and kidney function. Manuka honey also prevented CISP-induced histopathological changes observed in the liver and decreased the changes seen in the kidneys. Talh honey decreased CISP-induced liver histopathological changes but had no effect on CISP-induced kidney histopathological changes. Both honeys reduced the oxidative stress in the liver. Conversely, they have no effect on kidney oxidative stress, except that manuka honey increased CAT activity. GC-MS analysis showed the presence of the antioxidant octadecanoic acid in talh honey while heneicosane and hydrocinnamic acid were present at a higher content in manuka honey. The molecular mechanism was to limit the expression of inflammatory signals, including COX-2 and NF-κB, and the expression of the apoptotic signal, BAX and caspase-3 while inducing Bcl-2 expression.

Graphical abstract: Honey protects against cisplatin-induced hepatic and renal toxicity through inhibition of NF-κB-mediated COX-2 expression and the oxidative stress dependent BAX/Bcl-2/caspase-3 apoptotic pathway

Article information

Article type
Paper
Submitted
05 Apr 2018
Accepted
23 May 2018
First published
23 May 2018

Food Funct., 2018,9, 3743-3754

Honey protects against cisplatin-induced hepatic and renal toxicity through inhibition of NF-κB-mediated COX-2 expression and the oxidative stress dependent BAX/Bcl-2/caspase-3 apoptotic pathway

T. Neamatallah, N. A. El-Shitany, A. T. Abbas, S. S. Ali and B. G. Eid, Food Funct., 2018, 9, 3743 DOI: 10.1039/C8FO00653A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements