Issue 38, 2018

The effect of iron binding on uranyl(v) stability

Abstract

Here we report the effect of UO2+⋯Fe2+ cation–cation interactions on the redox properties of uranyl(V) complexes and on their stability with respect to proton induced disproportionation. The tripodal heptadentate Schiff base trensal3− ligand allowed the synthesis and characterization of the uranyl(VI) complexes [UO2(trensal)K], 1 and [UO2(Htrensal)], 2 and of uranyl(V) complexes presenting UO2+⋯K+ or UO2+⋯Fe2+ cation–cation interactions ([UO2(trensal)K]K, 3, [UO2(trensal)] [K(2.2.2crypt)][K(2.2.2crypt)], 4, [UO2(trensal)Fe(py)3], 6). The uranyl(V) complexes show similar stability in pyridine solution, but the presence of Fe2+ bound to the uranyl(V) oxygen leads to increased stability with respect to proton induced disproportionation through the formation of a stable Fe2+–UO2+–U4+ intermediate ([UO2(trensal)Fe(py)3U(trensal)]I, 7) upon addition of 2 eq. of PyHCl to 6. The addition of 2 eq. of PyHCl to 3 results in the immediate formation of U(IV) and UO22+ compounds. The presence of an additional UO2+ bound Fe2+ in [(UO2(trensal)Fe(py)3)2Fe(py)3]I2, 8, does not lead to increased stability. Redox reactivity and cyclic voltammetry studies also show an increased range of stability of the uranyl(V) species in the presence of Fe2+ with respect both to oxidation and reduction reactions, while the presence of a proton in complex 2 results in a smaller stability range for the uranyl(V) species. Cyclic voltammetry studies also show that the presence of a Fe2+ cation bound through one trensal3− arm in the trinuclear complex [{UO2(trensal)}2Fe], 5 does not lead to increased redox stability of the uranyl(V) showing the important role of UO2+⋯Fe2+ cation–cation interactions in increasing the stability of uranyl(V). These results provide an important insight into the role that iron binding may play in stabilizing uranyl(V) compounds in the environmental mineral-mediated reduction of uranium(VI).

Graphical abstract: The effect of iron binding on uranyl(v) stability

Supplementary files

Article information

Article type
Edge Article
Submitted
11 May 2018
Accepted
31 Jul 2018
First published
14 Aug 2018
This article is Open Access

All publication charges for this article have been paid for by the Royal Society of Chemistry
Creative Commons BY-NC license

Chem. Sci., 2018,9, 7520-7527

The effect of iron binding on uranyl(V) stability

R. Faizova, S. White, R. Scopelliti and M. Mazzanti, Chem. Sci., 2018, 9, 7520 DOI: 10.1039/C8SC02099J

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements