Issue 16, 2020

Leaching mechanism of bioapatite in carbonate-saturated water

Abstract

Bioapatite, the main inorganic component of bone, is similar to hydroxyapatite (HAp, Ca5[PO4]3(OH)) having some [CO3]2− content which plays an important role in leaching/precipitation processes in many biological lesions. We studied the leaching of powdered bovine tibia in soda-saturated (nahcolite, NaHCO3) water as a function of concentrations and treating periods. The reaction products were characterized by X-ray (XRD) and electron diffraction (SAED) techniques as well as high resolution transmission electron microscopy (HRTEM) and energy dispersive spectroscopy (EDS). We found evidence for dissolution of bone and precipitation of Ca-carbonate. The rate of carbonate precipitation was found to be a function of both the mass ratio of nahcolite/bone and the leaching time. According to XRD, calcite formed as a new crystalline phase at the expense of bioapatite. Based on HRTEM images, residual nanocrystalline apatite and unstable Ca-carbonate were also recognised, allowing the reconstruction of the intermediate stages of the leaching process. We propose a reaction sequence for the transformations of bioapatite in carbonated, alkaline media that may contribute to the understanding of the lesion processes of bone.

Graphical abstract: Leaching mechanism of bioapatite in carbonate-saturated water

Article information

Article type
Paper
Submitted
05 Aug 2019
Accepted
29 Feb 2020
First published
03 Mar 2020

CrystEngComm, 2020,22, 2788-2794

Leaching mechanism of bioapatite in carbonate-saturated water

Z. Dallos, V. K. Kis, F. Kristály and I. Dódony, CrystEngComm, 2020, 22, 2788 DOI: 10.1039/C9CE01228A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements