Issue 23, 2019

Antibacterial activities of Cu-MOFs containing glutarates and bipyridyl ligands

Abstract

Metal–organic frameworks (MOFs) can be utilized as antibacterial agents due to their effective antibacterial activities. Four three-dimensional (3D) Cu-MOFs formulated as [Cu2(Glu)2(μ-L)]·x(H2O) (Glu is glutarate, and L is bpy = 4,4′-bipyridine (1), bpa = 1,2-bis(4-pyridyl)ethane (2), bpe = 1,2-bis(4-pyridyl)ethylene (3), and bpp = 1,2-bis(4-pyridyl)propane (4)) were synthesized by hydrothermal reactions or modified literature methods. Their solid-state structures were slightly modified to increase their hydrolytic stabilities in aqueous solution. Despite the seemingly sufficient void spaces in all the solvent-free MOFs, only the thermally activated form of MOF 2 displayed selective gas uptake ability for CO2 over N2 and H2. The antibacterial activities of the four Cu-MOFs, 1, 2, 3, and 4, were investigated by determining their minimal bactericidal concentration (MBC) values against five strains of bacteria, including E. coli, S. aureus, K. pneumonia, P. aeruginosa, and MRSA, which can be easily met in our daily surrounding environments. Although these Cu-MOFs were found to be structurally very stable in aqueous medium during antibacterial activity tests, they exhibited excellent antibacterial activities against all five kinds of bacteria, including Gram-positive bacteria (S. aureus and MRSA) and Gram-negative bacteria (E. coli, K. pneumonia, and P. aeruginosa), with very low MBCs. The robust 3D frameworks with surface active metal sites rather than the small amount of leached CuII ions may participate more strongly in inactivating various kinds of bacteria and reduce potential cytotoxicity mainly caused by leached metal ions.

Graphical abstract: Antibacterial activities of Cu-MOFs containing glutarates and bipyridyl ligands

Supplementary files

Article information

Article type
Paper
Submitted
21 Feb 2019
Accepted
11 Apr 2019
First published
11 Apr 2019

Dalton Trans., 2019,48, 8084-8093

Antibacterial activities of Cu-MOFs containing glutarates and bipyridyl ligands

J. H. Jo, H. Kim, S. Huh, Y. Kim and D. N. Lee, Dalton Trans., 2019, 48, 8084 DOI: 10.1039/C9DT00791A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements