Issue 27, 2019

Phosphate and polyphosphate anion recognition by a dinuclear copper(ii) complex of an unsymmetrical squaramide

Abstract

In the search for receptors suitable for the recognition of phosphate or polyphosphate anions, a new unsymmetrical squaramide-based ligand bearing dipicolylamine (dpa) and ethylpiperazine units (L) was designed and prepared. The acid–base reactions of L, its copper(II) complexation behaviour and the binding of phosphate and polyphosphate anions by the copper(II) complexes used as receptors were evaluated. 1H and 13C NMR titrations of L performed in D2O allowed the determination of its protonation sequence. The ligand L is able to coordinate two copper(II) cations forming thermodynamically stable dinuclear complexes likely having two water molecules bound to each metal centre, as supported by DFT calculations. Coordinated water molecules can be replaced by the O-donors of the phosphate/polyphosphate anions. The potentiometric studies showed that at 2 : 1 Cu2+ : L ratio the dinuclear [Cu2LH−1]3+ species predominates from pH ∼ 5 to ∼7, and hydroxodinuclear species prevail at pH > 7. 1H NMR experiments in both H2O/D2O 9 : 1 v/v and in DMSO proved that copper(II) coordination provokes deprotonation of the squaramide NH bound to the ethylpiperazine moiety, resulting in [Cu2LH−1]3+ species. The dicopper(II) complexes of L, [Cu2LHi]4−i, were used as the receptor for the uptake of some phosphate and polyphosphate anions. The receptor presents very high association constants with HPPi3− and ATP4− and the determined Keff showed that at physiological pH ATP4− is selectively taken from an aqueous solution containing phenylphosphate (PhPO42−), aminoethylphosphate (Haep), AMP2– and ADP3−, but HPPi3− strongly interferes. DFT calculations suggest that the strong interaction with HPPi3− and ATP4− is related to the simultaneous coordination of the polyphosphate unit to the two copper(II) centres.

Graphical abstract: Phosphate and polyphosphate anion recognition by a dinuclear copper(ii) complex of an unsymmetrical squaramide

Supplementary files

Article information

Article type
Paper
Submitted
04 Apr 2019
Accepted
28 May 2019
First published
29 May 2019

Dalton Trans., 2019,48, 10104-10115

Phosphate and polyphosphate anion recognition by a dinuclear copper(II) complex of an unsymmetrical squaramide

C. V. Esteves, J. Costa, D. Esteban-Gómez, P. Lamosa, H. Bernard, C. Platas-Iglesias, R. Tripier and R. Delgado, Dalton Trans., 2019, 48, 10104 DOI: 10.1039/C9DT01434A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements