Issue 30, 2019

Designing active particles for colloidal microstructure manipulation via strain field alchemy

Abstract

Defects in a crystal can exert forces on each other via strain field interactions. Here we explore the strain-field-mediated interaction between an anisotropic interstitial probe particle and dislocation microstructures in a colloidal crystal composed of particles interacting via steep repulsive isotropic potentials. We optimize the interaction between probe particle and dislocation with the anisotropic shape of the probe as a free parameter. Such alchemical optimization is typically carried out upon the explicitly defined interaction potential parameters; instead, we optimize the strain field of the probe and then map back to particle shape. We distinguish this tactic from other alchemical methods as ‘strain alchemy’. We report several findings: (1) a robust mapping exists between strain field calculation methods (the method of eigenstrains) and strains produced by an anisotropic interstitial, (2) optimization of strain field interactions in the strain domain permits rapid evaluation of candidate shapes for interstitials, (3) interstitial mobility barriers can be estimated from the strain field, and (4) strongly interacting and highly mobile interstitial particles can be found that are capable of driving dislocation glide with applied force. Active particle-induced dislocation glide is examined for the cases of edge dislocation arrays and extrinsic dislocation loops. For edge dislocations, particle geometries of alternating large and small diameter segments were found to interact most strongly. For dislocation loops, interstitials with a single small radius segment surrounded by large radius segments are best.

Graphical abstract: Designing active particles for colloidal microstructure manipulation via strain field alchemy

Supplementary files

Article information

Article type
Paper
Submitted
02 May 2019
Accepted
27 Jun 2019
First published
18 Jul 2019

Soft Matter, 2019,15, 6086-6096

Author version available

Designing active particles for colloidal microstructure manipulation via strain field alchemy

B. VanSaders and S. C. Glotzer, Soft Matter, 2019, 15, 6086 DOI: 10.1039/C9SM00896A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements