Issue 6, 2021

Operando structure degradation study of PbS quantum dot solar cells

Abstract

PbS quantum dot (QD) solar cells demonstrate great potential in solar energy conversion with a broad and flexible spectral response. Even though long-term storage stabilities of QD solar cells were reported in literature, the operation stability from a more practical aspect, to date, has been not yet investigated. Herein, we observe the structure degradation process of a PbS QD-ink based solar cell during the device operation. Simultaneously to probing the solar cell parameters, the overall structure evolutions of the QDs in both, active layer and hole transport layer of the solar cell are studied with grazing-incidence small- and wide-angle X-ray scattering (GISAXS/GIWAXS). We find a spontaneous decrease of the QD inter-dot distance with an increase in the spatial disorder in the active layer (PbX2–PbS QDs, X = I, and Br) during the operation induced degradation. Consequently, the structure disorder-induced broadening of the energy state distribution is responsible for the decrease in open-circuit voltage Voc leading to the device degradation. These findings elucidate the origin of light-soaking as well as the structure degradation of QD ink-based solar cells and indicate that the stability of the device can be realized by the positional stabilization of the QDs in the QD solid.

Graphical abstract: Operando structure degradation study of PbS quantum dot solar cells

Supplementary files

Article information

Article type
Communication
Submitted
04 Aug 2020
Accepted
23 Apr 2021
First published
24 Apr 2021

Energy Environ. Sci., 2021,14, 3420-3429

Operando structure degradation study of PbS quantum dot solar cells

W. Chen, R. Guo, H. Tang, K. S. Wienhold, N. Li, Z. Jiang, J. Tang, X. Jiang, L. P. Kreuzer, H. Liu, M. Schwartzkopf, X. W. Sun, S. V. Roth, K. Wang, B. Xu and P. Müller-Buschbaum, Energy Environ. Sci., 2021, 14, 3420 DOI: 10.1039/D1EE00832C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements