Issue 3, 2022

Sublayer-enhanced atomic sites of single atom catalysts through in situ atomization of metal oxide nanoparticles

Abstract

Carbon supported single atom catalysts (SACs) show outstanding potential as effective electrocatalysts in energy storage and conversion devices. However, the low surface-active site density associated with most SACs constrains their practical applications. By controlling the layers of FeSA through the in situ atomization of graphene supported metal oxide nanoparticles (NPs), we demonstrate that the Fe–N4–C active sites increase from 1 to 3 layers as the catalyst loading increases. The turnover frequency (TOF) for the oxygen reduction reaction (ORR) is doubled because the sublayer Fe–Nx–C could tune the electron density by increasing the energy gap between the d-band centre and the fermi level, weakening the adsorption of intermediates and further reducing the reaction overpotential in comparison to a single-layer Fe–N4. The sublayer-enhanced catalysts achieve an optimum activity for the ORR with a half-wave potential of 0.901 V under alkaline conditions and 0.74 V under acidic conditions, significantly higher performance in comparison to that of single layer active sites. Potential applications of these newly-developed catalysts were demonstrated in Zn–air batteries and fuel cells. This work provides a new way to achieve high TOF by controlling the layer of single atom active sites and offers new strategies to overcome the low-density atomic sites for SACs.

Graphical abstract: Sublayer-enhanced atomic sites of single atom catalysts through in situ atomization of metal oxide nanoparticles

Supplementary files

Article information

Article type
Paper
Submitted
21 Oct 2021
Accepted
17 Jan 2022
First published
28 Jan 2022

Energy Environ. Sci., 2022,15, 1183-1191

Sublayer-enhanced atomic sites of single atom catalysts through in situ atomization of metal oxide nanoparticles

X. Wu, Q. Wang, S. Yang, J. Zhang, Y. Cheng, H. Tang, L. Ma, X. Min, C. Tang, S. P. Jiang, F. Wu, Y. Lei, S. Ciampic, S. Wang and L. Dai, Energy Environ. Sci., 2022, 15, 1183 DOI: 10.1039/D1EE03311E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements