Issue 1, 2022

Electronic properties of double-atom catalysts for electrocatalytic oxygen evolution reaction in alkaline solution: a DFT study

Abstract

In alkaline solution, the electrocatalytic oxygen evolution reaction (OER) of dual transition metal atom (2TM) nitrogen-decorated graphene as a double-atom catalyst (DAC) has received special attention. Here, using density functional theory (DFT) calculations, the OER electrocatalysis of 2TM-pyridine/amino-nitrogen-decorated graphene (2TM-NPAG and 2TM-NPG. 2TM represents FeCo, FeNi, Conti) is studied. The electrocatalytic OER mechanism is that 2TM-NPG acts as the pre-catalyst, while the real catalysts are 2TM-NPAG and 2TM-NPG-O. In particular, CoNi-NPAG and CoNi-NPG-O exhibit higher OER activity compared to state-of-the-art RuO2 at pH = 14. It is confirmed that the potential-determining step is also the rate-determining step. Amino-nitrogen is the main accepter of electrons from CoNi atoms and pyridine-nitrogen is the main acceptor of electrons from nearby C atoms. The role of different N coordination continues to influence the entire electrocatalytic OER process of CoNi-NG. Simultaneously, the overpotential of CoNi-NG is in a volcano-shaped relationship with the electronic properties (oxidation state or d-band center) of the catalytic site of Co. Moreover, CoNi-NPAG and CoNi-NPG-O are the closest to the center of the OER overpotential (a function of the d-band center and oxidation state) contour plot, implying that they exhibit the best catalytic activity among all the CoNi-NG materials. The optimal electronic properties of CoNi-NPAG and CoNi-NPG-O contribute towards their excellent OER performance, and provide a new breakthrough in developing high-performance DACs.

Graphical abstract: Electronic properties of double-atom catalysts for electrocatalytic oxygen evolution reaction in alkaline solution: a DFT study

Supplementary files

Article information

Article type
Paper
Submitted
26 Sep 2021
Accepted
19 Nov 2021
First published
19 Nov 2021

Nanoscale, 2022,14, 187-195

Electronic properties of double-atom catalysts for electrocatalytic oxygen evolution reaction in alkaline solution: a DFT study

C. Yang, Y. Wu, Y. Wang, H. Zhang, L. Zhu and X. Wang, Nanoscale, 2022, 14, 187 DOI: 10.1039/D1NR06334K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements