Issue 7, 2022

A DNase-mimetic artificial enzyme for the eradication of drug-resistant bacterial biofilm infections

Abstract

The construction of multifunctional nano-enzymes is a feasible strategy for fighting multi-drug resistant (MDR) bacterial biofilm-associated infections. Extracellular DNA (eDNA) is an important functional part of biofilm formation, including the initial adherence of bacteria to subsequent development and eventual maturation. A nano-enzyme platform of graphene oxide-based nitrilotriacetic acid-cerium(IV) composite (GO-NTA-Ce) against bacterial biofilm infection has been developed. When located at the site of bacteria-associated infection, GO-NTA-Ce could inhibit the biofilm formation and effectively disperse the formed biofilm by degrading the eDNA. In addition to Ce-mediated deoxyribonuclease (DNase)-like activity, near-infrared laser irradiation of GO-NTA-Ce could produce local hyperthermia to kill the bacteria that lost the protection by the biofilm matrix. In addition, graphene is also a new green broad-spectrum antimicrobial material that can exert its antimicrobial effects through physical damage and chemical damage. In short, our GO-NTA-Ce nano-enzyme platform is capable of effectively eradicating drug-resistant bacterial biofilm infections through the triple action of DNase-like enzyme properties, photothermal therapy, and graphene-based antimicrobial activity, and the nano-composite has excellent potential for the treatment of MDR bacterial biofilm infections.

Graphical abstract: A DNase-mimetic artificial enzyme for the eradication of drug-resistant bacterial biofilm infections

Supplementary files

Article information

Article type
Paper
Submitted
18 Nov 2021
Accepted
02 Jan 2022
First published
19 Jan 2022

Nanoscale, 2022,14, 2676-2685

A DNase-mimetic artificial enzyme for the eradication of drug-resistant bacterial biofilm infections

H. Hu, X. Kang, Z. Shan, X. Yang, W. Bing, L. Wu, H. Ge and H. Ji, Nanoscale, 2022, 14, 2676 DOI: 10.1039/D1NR07629A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements