Issue 39, 2021, Issue in Progress

Copper sulfide as the cation exchange template for synthesis of bimetallic catalysts for CO2 electroreduction

Abstract

Among metals used for CO2 electroreduction in water, Cu appears to be unique in its ability to produce C2+ products like ethylene. Bimetallic combinations of Cu with other metals have been investigated with the goal of steering selectivity via creating a tandem pathway through the CO intermediate or by changing the surface electronic structure. Here, we demonstrate a facile cation exchange method to synthesize Ag/Cu electrocatalysts for CO2 reduction using Cu sulfides as a growth template. Beginning with Cu2−xS nanosheets (C-nano-0, 100 nm lateral dimension, 14 nm thick), varying the Ag+ concentration in the exchange solution produces a gradual change in crystal structure from Cu7S4 to Ag2S, as the Ag/Cu mass ratio varies from 0.3 to 25 (CA-nano-x, x indicating increasing Ag fraction). After cation exchange, the nanosheet morphology remains but with increased shape distortion as the Ag fraction is increased. Interestingly, the control (C-nano-0) and cation exchanged nanosheets have very high faradaic efficiency for producing formate at low overpotential (−0.2 V vs. RHE). The primary effect of Ag incorporation is increased production of C2+ products at −1.0 V vs. RHE compared with C-nano-0, which primarily produces formate. Cation exchange can also be used to modify the surface of Cu foils. A two-step electro-oxidation/sulfurization process was used to form Cu sulfides on Cu foil (C-foil-x) to a depth of a few 10 s of microns. With lower Ag+ concentrations, cation exchange produces uniformly dispersed Ag; however, at higher concentrations, Ag particles nucleate on the surface. During CO2 electroreduction testing, the product distribution for Ag/Cu sulfides on Cu foil (CA-foil-x-y) changes in time with an initial increase in ethylene and methane production followed by a decrease as more H2 is produced. The catalysts undergo a morphology evolution towards a nest-like structure which could be responsible for the change in selectivity. For cation-exchanged nanosheets (CA-nano-x), pre-reduction at negative potentials increases the CO2 reduction selectivity compared to tests of as-synthesized material, although this led to the aggregation of nanosheets into filaments. Both types of bimetallic catalysts are capable of selective reduction of CO2 to multi-carbon products, although the optimal configurations appear to be metastable.

Graphical abstract: Copper sulfide as the cation exchange template for synthesis of bimetallic catalysts for CO2 electroreduction

Supplementary files

Article information

Article type
Paper
Submitted
16 May 2021
Accepted
21 Jun 2021
First published
07 Jul 2021
This article is Open Access
Creative Commons BY license

RSC Adv., 2021,11, 23948-23959

Copper sulfide as the cation exchange template for synthesis of bimetallic catalysts for CO2 electroreduction

J. Li, J. Li, C. Dun, W. Chen, D. Zhang, J. Gu, J. J. Urban and J. W. Ager, RSC Adv., 2021, 11, 23948 DOI: 10.1039/D1RA03811G

This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. You can use material from this article in other publications without requesting further permissions from the RSC, provided that the correct acknowledgement is given.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements