Issue 18, 2022

Insight into the role of reduced graphene oxide in enhancing photocatalytic hydrogen evolution in disordered carbon nitride

Abstract

Compared to crystalline carbon nitride, the performance of disordered carbon nitride (d-CN) as a hydrogen production photocatalyst is extremely poor. Owing to its disordered atomic orientation, it is prone to numerous defect states. These energy states are potential sites for trapping and recombination of photogenerated charge carriers. As a result, rapid recombination of photogenerated charge carriers places a fundamental photophysical challenge in charge separation and transport, which inhibits its photocatalytic activity. In the presence of reduced graphene oxide (rGO), d-CN shows enhanced photocatalytic production of hydrogen. However, photophysical insight into the tacit role of rGO is not well understood which limits the rational design of d-CN as a photocatalyst. Particularly, understanding of the early time-scale (in fs to ps) recombination mechanism and the charge transport kinetics has not yet been achieved. With the help of ultrafast transient absorption spectroscopy, femtosecond time-resolved photoluminescence spectroscopy and transient photocurrent measurements, this article deciphers the ultrafast dynamics of the separation and transport of photogenerated charge carriers in d-CN facilitated by rGO. It is found that rGO substantially suppresses the bimolecular and trap-assisted recombination and enables a faster separation of charge carriers. As a result, it increases the lifetime of the charge carriers to be transported to the surface catalytic sites, and therefore, augments the rate of hydrogen production almost by an order of magnitude. Our findings therefore offer a proof-of-concept for overcoming the trap-mediated recombination problems in disordered carbon nitride.

Graphical abstract: Insight into the role of reduced graphene oxide in enhancing photocatalytic hydrogen evolution in disordered carbon nitride

Supplementary files

Article information

Article type
Paper
Submitted
13 Jan 2022
Accepted
11 Apr 2022
First published
12 Apr 2022
This article is Open Access
Creative Commons BY-NC license

Phys. Chem. Chem. Phys., 2022,24, 11213-11221

Insight into the role of reduced graphene oxide in enhancing photocatalytic hydrogen evolution in disordered carbon nitride

M. Z. Rahman, P. Maity, O. F. Mohammed and J. Gascon, Phys. Chem. Chem. Phys., 2022, 24, 11213 DOI: 10.1039/D2CP00200K

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements