Issue 3, 2023

A 19% efficient and stable organic photovoltaic device enabled by a guest nonfullerene acceptor with fibril-like morphology

Abstract

A nonfullerene acceptor, isoIDITC, capable of exhibiting fibril-like morphology, is utilized as a third component in organic photovoltaic devices (OPVs). A power conversion efficiency (PCE) of 19% is achieved in ternary PM6:BTP-eC9:isoIDITC bulk-heterojunction (BHJ) devices. Analyses reveal the formation of an alloy model (BTP-eC9:isoIDTIC) and a well-defined fibril-like network and enhanced crystallization of BHJ in the ternary blend. Slightly increased carrier mobilities, longer carrier lifetimes, and suppressed trap-assisted/bimolecular recombination are observed in the ternary BHJ-based devices compared to the binary PM6:BTP-eC9 BHJ cells. Moreover, because of the high surface energy (γ) and low glass-transition temperature (Tg) of BTP-eC9, the acceptor and donor tend to migrate toward the hole and electron collecting electrodes, respectively, during aging tests. Crucially, isoIDTIC with low γ and high Tg has a low diffusion coefficient and can suppress demixing in vertical stratification of the BHJ, resulting in an increase in T80 lifetime from 101 hours to 254 hours. Our results highlight the utilization of the nonfullerene acceptor with fibril-like morphology and high Tg as an important third component toward high-performance and stable ternary OPVs.

Graphical abstract: A 19% efficient and stable organic photovoltaic device enabled by a guest nonfullerene acceptor with fibril-like morphology

Supplementary files

Article information

Article type
Paper
Submitted
27 Oct 2022
Accepted
06 Jan 2023
First published
06 Jan 2023
This article is Open Access
Creative Commons BY license

Energy Environ. Sci., 2023,16, 1062-1070

A 19% efficient and stable organic photovoltaic device enabled by a guest nonfullerene acceptor with fibril-like morphology

H. Chen, S. Y. Jeong, J. Tian, Y. Zhang, D. R. Naphade, M. Alsufyani, W. Zhang, S. Griggs, H. Hu, S. Barlow, H. Y. Woo, S. R. Marder, T. D. Anthopoulos, I. McCulloch and Y. Lin, Energy Environ. Sci., 2023, 16, 1062 DOI: 10.1039/D2EE03483B

This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. You can use material from this article in other publications without requesting further permissions from the RSC, provided that the correct acknowledgement is given.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements