Issue 3, 2023

Ferulic acid supplementation alleviates hyperuricemia in high-fructose/fat diet-fed rats via promoting uric acid excretion and mediating the gut microbiota

Abstract

The prevalence of hyperuricemia (HUA) has been rising, and it is typically accompanied by renal injury and intestinal flora disorder, leading to a non-negligible health crisis. Ferulic acid (FA), as a familiar polyphenol, has been proven to exert anti-hyperuricemic properties via inhibiting uric acid (UA) synthesis; however, the detailed underlying mechanisms remain unclear. The aim of this study was to explore the regulatory effect of FA on UA excretion as a potential strategy for reducing UA levels, and the comorbidities of HUA. FA treatment downregulated the expression of urate absorption transporter genes and repressed the toll-like receptor 4 (TLR4)/nuclear factor kappa-B (NF-κB) pathway in UA-stimulated HK-2 cells. To examine these effects in vivo, FA or allopurinol (positive control) was given to rats with HUA induced by a high-fructose/fat diet (HFFD) for 20 weeks. FA markedly decreased the serum UA, blood urea nitrogen, and creatinine levels. The expression of urate absorption transporters was downregulated, whereas the expression of secretion transporters was upregulated in the kidneys and intestines of FA-treated HUA rats. Additionally, FA mitigated renal oxidative stress, and suppressed the activation of the TLR4/NF-κB pathway and the downstream inflammatory response-related markers in the kidneys. Moreover, FA remodeled the composition of the gut microbiota, characterized by an increase in beneficial bacteria (e.g., Lactobacillus and Ruminococcus) and a decrease in pathogenic bacteria (e.g., Bacteroides). In conclusion, our study validated FA as an effective nutrient to ameliorate HFFD-induced HUA, suggesting its potential to mitigate the HUA-associated renal impairment and intestinal microbiota disturbance.

Graphical abstract: Ferulic acid supplementation alleviates hyperuricemia in high-fructose/fat diet-fed rats via promoting uric acid excretion and mediating the gut microbiota

Supplementary files

Article information

Article type
Paper
Submitted
01 Nov 2022
Accepted
17 Jan 2023
First published
17 Jan 2023

Food Funct., 2023,14, 1710-1725

Ferulic acid supplementation alleviates hyperuricemia in high-fructose/fat diet-fed rats via promoting uric acid excretion and mediating the gut microbiota

N. Zhang, J. Zhou, L. Zhao, Z. Zhao, S. Wang, L. Zhang and F. Zhou, Food Funct., 2023, 14, 1710 DOI: 10.1039/D2FO03332A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements