Issue 10, 2023

Designing a new method for growing metal–organic framework (MOF) on MOF: synthesis, characterization and catalytic applications

Abstract

Metal–organic frameworks as a unique class of high-surface-area materials have gained considerable attention due to their characteristic properties. In this perspective, herein, we report an eco-friendly and inexpensive route for the synthesis of 4(3H)-quinazolinones using magnetically separable core–shell-like bimetallic Fe3O4-MAA@Co-MOF@Cu-MOF NPs as environmentally-friendly heterogeneous catalysts. To the best of our knowledge, this is the first example of the integration of two different types of MOFs, which contain two different metal ions (Co2+ in the core and Cu2+ in the shell) using an external ligand. Our study not only introduces a novel nanostructured catalyst for the organic reaction but also presents a new strategy for the combination of two MOFs in one particle at the nanometer level. To survey the structural and compositional features of the synthesized nanocatalyst, a variety of spectroscopic and microscopic techniques including FT-IR, XRD, BET, TEM, HR-TEM, FE-SEM, EDX, EDX-mapping, TGA, VSM, and ICP-OES were employed. The combination of magnetic Co-MOF with Cu-MOF leads to achieving unique structural and compositional properties for Fe3O4-MAA@Co-MOF@Cu-MOF NPs with a particle size of 20–70 nm, mesostructure, and relatively large specific surface area (236.16 m2 g−1). The as-prepared nanostructured catalyst can be an excellent environment catalyst for the synthesis of a wide library of 4(3H)-quinazolinones derivatives, including electron-donating and electron-withdrawing aromatic, heteroaromatic, and aliphatic compounds under solvent-free conditions much better than the parent precursors. Moreover, by investigating the longevity of the nanocatalyst, the conclusion could be derived that the aforesaid nanocatalyst is stable under reaction conditions and could be recycled for at least seven recycle runs without a discernible decrease in its catalytic activity.

Graphical abstract: Designing a new method for growing metal–organic framework (MOF) on MOF: synthesis, characterization and catalytic applications

Supplementary files

Article information

Article type
Paper
Submitted
01 Dec 2022
Accepted
28 Jan 2023
First published
30 Jan 2023

Nanoscale, 2023,15, 4917-4931

Designing a new method for growing metal–organic framework (MOF) on MOF: synthesis, characterization and catalytic applications

P. Sanati-Tirgan, H. Eshghi and A. Mohammadinezhad, Nanoscale, 2023, 15, 4917 DOI: 10.1039/D2NR06729C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements