Issue 9, 2023

Designing biomimetic scaffolds for skin tissue engineering

Abstract

There is a general increase in the number of patients with non-healing skin wounds, imposing a huge social and economic burden on patients and healthcare systems. Severe skin injury is an important clinical challenge. There is a lack of skin donors, and skin defects and scarring after surgery can lead to impaired skin function and skin integrity. Researchers worldwide have made great efforts to create human skin organs but are limited by the lack of key biological structural features of the skin. Tissue engineering repairs damaged tissue by incorporating cells into biocompatible and biodegradable porous scaffolds. Skin tissue engineered scaffolds not only have appropriate physical and mechanical properties but also exhibit skin-like surface topography and microstructure, which can promote cell adhesion, proliferation, and differentiation. At present, skin tissue engineering scaffolds are being developed into clinical applications that can overcome the limitations of skin transplantation, promote the process of wound healing, and repair skin tissue damage. This provides an effective therapeutic option for the management of patients with skin lesions. This paper reviews the structure and function of skin tissue and the process of wound healing, and summarizes the materials and manufacturing methods used to fabricate skin tissue engineering scaffolds. Next, the design considerations of skin tissue engineering scaffolds are discussed. An extensive review of skin scaffolds and clinically approved scaffold materials is presented. Lastly, some important challenges in the construction of skin tissue engineering scaffolds are presented.

Graphical abstract: Designing biomimetic scaffolds for skin tissue engineering

Article information

Article type
Review Article
Submitted
11 Jan 2023
Accepted
10 Mar 2023
First published
16 Mar 2023

Biomater. Sci., 2023,11, 3051-3076

Designing biomimetic scaffolds for skin tissue engineering

J. Chen, Y. Fan, G. Dong, H. Zhou, R. Du, X. Tang, Y. Ying and J. Li, Biomater. Sci., 2023, 11, 3051 DOI: 10.1039/D3BM00046J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements