Issue 27, 2023

Strain-induced phase transitions and high carrier mobility in two-dimensional Janus MGeSN2 (M = Ti, Zr, and Hf) structures: first-principles calculations

Abstract

In this study, we construct new 2D Janus MGeSN2 (M = Ti, Zr, and Hf) monolayers and systematically investigate their electronic band structures under applied biaxial strain. Their crystal lattice and electronic as well as transport properties are also examined based on the first-principles calculations and deformation potential theory. The results show that the MGeSN2 structures have good dynamical and thermal stability, and their elastic constants satisfy the criteria of Born–Huang also indicating the good mechanical stability of these materials for experimental synthesis. Our calculated results indicate that the TiGeSN2 monolayer exhibits indirect-bandgap semiconductor characteristics whereas the ZrGeSN2 and HfGeSN2 monolayers exhibit direct-bandgap semiconductor characteristics. Importantly, the biaxial strain shows significant influences on the electronic energy band structures of the monolayers in the presence of a phase transition from semiconductor to metal, which is an important feature of these materials for their application in electronic devices. All three structures exhibit anisotropic carrier mobility in both x and y transport directions, suggesting their great potential for application in electronic devices.

Graphical abstract: Strain-induced phase transitions and high carrier mobility in two-dimensional Janus MGeSN2 (M = Ti, Zr, and Hf) structures: first-principles calculations

Supplementary files

Article information

Article type
Paper
Submitted
11 Apr 2023
Accepted
15 Jun 2023
First published
15 Jun 2023

Phys. Chem. Chem. Phys., 2023,25, 18075-18085

Strain-induced phase transitions and high carrier mobility in two-dimensional Janus MGeSN2 (M = Ti, Zr, and Hf) structures: first-principles calculations

L. C. Nhan, N. T. Hiep, C. Q. Nguyen and N. N. Hieu, Phys. Chem. Chem. Phys., 2023, 25, 18075 DOI: 10.1039/D3CP01647A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements