Issue 40, 2023

Analysis of the bonding in tetrahedrane and phosphorus-substituted tetrahedranes

Abstract

The bonding structures of tetrahedrane, phosphatetrahedrane, diphosphatetrahedrane and triphosphatetrahedrane are studied by employing an intrinsic quasi-atomic orbital analysis. Ethane, cyclopropane and tetrahedral P4 are employed as reference systems. The orbital analysis is paired with the computation of strain energies via isodesmic reactions. The results show that the increase in geometric strain upon transition from ethane to cyclopropane to tetrahedrane weakens the CC bonds, despite leading to shorter C–C interatomic distances. With the increase in strain, the orbitals centered on C and involved in the bonding of the cage structure are observed to have elevated p-character, and the orbital structure of C deviates from sp3 hybridization. The systematic substitution of CH groups by P atoms in the cage structure of tetrahedrane leads to stronger CC bonds, larger angles in the cage structures of the resulting phosphatetrahedranes, lower p-character in the orbitals involved in the bonding of the cages, and lower strain energies. It is found that P is more amenable to strained molecular arrangements than is C, and that the propensity of a given atom to hybridize s and p functions, or the lack thereof, has implications in the stability of molecules with strained geometries. The combination of the calculations presented here with the existing literature provides insight into the apparent propensity of tetrahedrane and P4 to ‘break’ their tetrahedral structures. Trends in the bonding interactions, such as bond strengths, s- and p-orbital characters and charge transfer are identified and related to the strain energy observed in each of the analyzed systems.

Graphical abstract: Analysis of the bonding in tetrahedrane and phosphorus-substituted tetrahedranes

Article information

Article type
Paper
Submitted
28 Jul 2023
Accepted
26 Sep 2023
First published
26 Sep 2023
This article is Open Access
Creative Commons BY-NC license

Phys. Chem. Chem. Phys., 2023,25, 27276-27292

Analysis of the bonding in tetrahedrane and phosphorus-substituted tetrahedranes

D. Del Angel Cruz, J. L. Galvez Vallejo and M. S. Gordon, Phys. Chem. Chem. Phys., 2023, 25, 27276 DOI: 10.1039/D3CP03619G

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements