Issue 1, 2002

A Hantzsch synthesis of 2-aminothiazoles performed in a heated microreactor system

Abstract

This paper presents the first example known to the authors of a heated organic reaction performed on a glass microreactor under electro-osmotic flow control. The experiments consisted of the preparation of a series of 2-aminothiazoles by means of a Hantzsch reaction of ring-substituted 2-bromoacetophenones and 1-substituted-2-thioureas carried out in microchannels, with the aim of investigating the generic utility of the reactor in carrying out analogue reactions. The reactions were performed on T-design microchips etched into a thin borosilicate glass plate and sealed over with a thick borosilicate top plate containing reservoirs. The mobility of the reagents and products was achieved using electro-osmotic flow (EOF), with the driving voltages being generated by a computer-controlled power supply. During the experiments the T-shaped chip was heated at 70 °C using a Peltier heater, aligned with the channels and the heat generated by this device was applied to the lower plate. The degree of conversion was quantified by LC-MS using UV detection by comparison with standard calibration curves for starting materials and final products. In all cases, conversions were found to be similar or greater than those found for equivalent macro scale batch syntheses, thus illustrating the potential of this heated microreactor system to generate a series of compounds which contain biologically active molecules.

Article information

Article type
Paper
Submitted
15 Oct 2001
Accepted
21 Dec 2001
First published
18 Jan 2002

Lab Chip, 2002,2, 31-33

A Hantzsch synthesis of 2-aminothiazoles performed in a heated microreactor system

E. Garcia-Egido, S. Y. F. Wong and B. H. Warrington, Lab Chip, 2002, 2, 31 DOI: 10.1039/B109360F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements