Issue 6, 2004

Fast automatic registration of images using the phase of a complex wavelet transform: application to proteome gels

Abstract

Image registration describes the process of manipulating a distorted version of an image such that its pixels overlay the equivalent pixels in a clean, master or reference image. The need for it has assumed particular prominence in the analysis of images of electrophoretic gels used in the analysis of protein expression levels in living cells, but also has fundamental applications in most other areas of image analysis. Much of the positional information of a data feature is carried in the phase of a complex transform, so a complex transform allows explicit specification of the phase, and hence of the position of features in the image. Registration of a test gel to a reference gel is achieved by using a multiresolution movement map derived from the phase of a complex wavelet transform (the Q-shift wavelet transform) to dictate the warping directly via movement of the nodes of a Delaunay-triangulated mesh of points. This warping map is then applied to the original untransformed image such that the absolute magnitude of the spots remains unchanged. The technique is general to any type of image. Results are presented for a simple computer simulated gel, a simple real gel registration between similar “clean” gels with local warping vectors distributed about one main direction, a hard problem between a reference gel and a “dirty” test gel with multi-directional warping vectors and many artifacts, and some typical gels of present interest in post-genomic biology. The method compares favourably with others, since it is computationally rapid, effective and entirely automatic.

Article information

Article type
Paper
Submitted
01 Mar 2004
Accepted
06 Apr 2004
First published
28 Apr 2004

Analyst, 2004,129, 542-552

Fast automatic registration of images using the phase of a complex wavelet transform: application to proteome gels

A. M. Woodward, J. J. Rowland and D. B. Kell, Analyst, 2004, 129, 542 DOI: 10.1039/B403134B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements