Issue 44, 2005

LPD silica coating of individual single walled carbon nanotubes

Abstract

Single walled carbon nanotubes (SWNTs) have been coated with fluorine-doped silica by liquid phase deposition (LPD) using a silica–H2SiF6 solution and a surfactant stabilized solution of SWNTs. The coating of individual SWNTs versus small ropes is controlled by the choice of surfactant. Since the LPD reaction is performed close to the isoelectric point of the silica, some of the SiO2–SWNTs are fused together but the SWNTs remain individual in these composite structures. The SiO2–SWNTs have been characterized by SEM, TEM, Raman and IR spectroscopy, and XPS. Raman fluoresence is maintained even with coatings >50 nm. Using the relative intensity of the Raman G peak and the 8,3 SWNT fluorescence as a convenient measure of bundling, it may be shown that any decrease of fluoresence during growth is not due to changes in ionic strength or pH, as a consequence of addition of the LPD solution or the presence of HF as a side product in the deposition. The Raman D and G modes show no change in intensity, while the Fano line increases, both suggesting that no sidewall functionalization or proton adsorption of the SWNTs occurs during coating. The UV-visible-near infrared spectra shows a red shift in the first Van Hove transitions of the coated SWNTs inferring that the SWNTs in SiO2–SWNTs are in a more polarizable and inhomogeneous environment than that of surfactant solutions. Mats of SiO2–SWNT may be deposited onto silicon and gold substrates and through lithography may be patterned by etching off selected areas of the silica coating.

Graphical abstract: LPD silica coating of individual single walled carbon nanotubes

Supplementary files

Article information

Article type
Paper
Submitted
12 Jul 2005
Accepted
06 Sep 2005
First published
29 Sep 2005

J. Mater. Chem., 2005,15, 4678-4687

LPD silica coating of individual single walled carbon nanotubes

E. A. Whitsitt, V. C. Moore, R. E. Smalley and A. R. Barron, J. Mater. Chem., 2005, 15, 4678 DOI: 10.1039/B509869F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Spotlight

Advertisements