Issue 9, 2007

Dielectric elastomers as next-generation polymeric actuators

Abstract

Due to their versatile properties, robust behavior, facile processability and low cost, organic polymers have become the material of choice for an increasing number of mature and cutting-edge technologies. In the last decade or so, a new class of polymers capable of responding to external electrical stimulation by displaying significant size or shape change has emerged. These responsive materials, collectively referred to as electroactive polymers (EAPs), are broadly classified as electronic or ionic according to their operational mechanism. Electronic EAPs generally exhibit superior performance relative to ionic EAPs in terms of actuation strain, reliability, durability and response time. Among electronic EAPs, dielectric elastomers exhibit the most promising properties that mimic natural muscle for use in advanced robotics and smart prosthetics, as well as in haptic and microfluidic devices. Elastomers derived from homopolymers such as acrylics and silicones have received considerable attention as dielectric EAPs, whereas novel dielectric EAPs based on selectively swollen nanostructured block copolymers with composition-tailorable properties have only recently been reported. Here, we provide an overview of various EAPs in terms of their operational mechanisms, uses and shortcomings, as well as a detailed account of dielectric elastomers as next-generation actuators.

Graphical abstract: Dielectric elastomers as next-generation polymeric actuators

Article information

Article type
Review Article
Submitted
16 Apr 2007
Accepted
06 Jun 2007
First published
18 Jul 2007

Soft Matter, 2007,3, 1116-1129

Dielectric elastomers as next-generation polymeric actuators

R. Shankar, T. K. Ghosh and R. J. Spontak, Soft Matter, 2007, 3, 1116 DOI: 10.1039/B705737G

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements