Issue 22, 2011

Interaction of Triapine and related thiosemicarbazones with iron(iii)/(ii) and gallium(iii): a comparative solution equilibrium study

Abstract

Stoichiometry and stability of GaIII, FeIII, FeII complexes of Triapine and five related α-N heterocyclic thiosemicarbazones with potential antitumor activity have been determined by pH-potentiometry, UV-vis spectrophotometry, 1H NMR spectroscopy, and spectrofluorimetry in aqueous solution (with 30% DMSO), together with the characterization of the proton dissociation processes. Additionally, the redox properties of the iron complexes were studied by cyclic voltammetry at various pH values. Formation of high stability bis-ligand complexes was found in all cases, which are predominant at physiological pH with FeIII/FeII, whilst only at the acidic pH range with GaIII. The results show that among the thiosemicarbazones with various substituents the N-terminal dimethylation does not exert a measurable effect on the redox potential, but has the highest impact on the stability of the complexes as well as the cytotoxicity, especially in the absence of a pyridine-NH2 group in the molecule. In addition the fluorescence properties of the ligands in aqueous solution and their changes caused by GaIII were studied.

Graphical abstract: Interaction of Triapine and related thiosemicarbazones with iron(iii)/(ii) and gallium(iii): a comparative solution equilibrium study

Supplementary files

Article information

Article type
Paper
Submitted
27 Dec 2010
Accepted
22 Mar 2011
First published
27 Apr 2011

Dalton Trans., 2011,40, 5895-5905

Interaction of Triapine and related thiosemicarbazones with iron(III)/(II) and gallium(III): a comparative solution equilibrium study

É. A. Enyedy, M. F. Primik, C. R. Kowol, V. B. Arion, T. Kiss and B. K. Keppler, Dalton Trans., 2011, 40, 5895 DOI: 10.1039/C0DT01835J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements