Volume 160, 2013

Femtosecond study of the effects of ions and hydrophobes on the dynamics of water

Abstract

We study the effects of ions and hydrophobic molecular groups on the orientational dynamics of water using THz dielectric relaxation (THz-DR) and polarization-resolved femtosecond infrared (fs-IR) pump–probe spectroscopy. We measure the dynamics of water in solutions of NaI, NaCl, CsCl, guanidinium chloride (GndCl) and tetramethyl guanidinium chloride (TMGndCl) of different concentrations. With THz-DR we observe that strongly hydrated cations align the static dipoles of their surrounding water molecules. With fs-IR we find that the OD groups that form hydrogen bonds to halide anions reorient with two distinct time constants of 2 ± 0.3 ps and 9 ± 1 ps. The fast process is assigned to a wobbling motion of the OD group that keeps the hydrogen bond with the anion intact. The amplitude of this wobbling motion depends on the nature of both the anion and the counter cation. The replacement of four of the six hydrogen atoms of the weakly hydrated cation guanidinium by hydrophobic methyl groups leads to an exceptionally strong slowing down of the water dynamics. Hydrophobic groups thus appear to have a much stronger effect on the dynamics of water than ions. These findings give new insights in the mechanism of protein denaturation by GndCl and TMGndCl.

Article information

Article type
Paper
Submitted
03 May 2012
Accepted
06 Jun 2012
First published
07 Jun 2012

Faraday Discuss., 2013,160, 171-189

Femtosecond study of the effects of ions and hydrophobes on the dynamics of water

S. T. van der Post, K. Tielrooij, J. Hunger, E. H. G. Backus and H. J. Bakker, Faraday Discuss., 2013, 160, 171 DOI: 10.1039/C2FD20097J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements