Issue 31, 2012

Synthesis of isomorphously substituted extra-large pore UTL zeolites

Abstract

The influence of various synthesis parameters (e.g. gel composition, pH of the reaction mixture, duration of crystallization) on the phase selectivity of zeolite formation in germanosilicate reaction medium in the presence of different three-valent heteroatoms (B, Al, Ga, Fe or In) was systematically studied and compared with a controlled crystallization from pure germanosilicate media. The boundary conditions of the formation of the pure phase of isomorphously substituted extra-large pore zeolite UTL were established. In the presence of 1 mol% of the respective heteroelement in the initial gel the pH borders of UTL formation are found to be 7.5–11.9 for Fe-, 7.8–12.0 for B-, 8.2–11.0 for Ga-, 11.0–12.0 for In-, and 11.3–12.0 for Al-containing reaction mixtures. The maximum concentration of heteroelements in the reaction mixture for the successful synthesis of UTL is 1.5 mol% for Al and Ga, 6 mol% for In, and 13 mol% for B. The size of UTL crystals decreases in the order Al- > In- > Ga- > Fe- ≈ B-UTL. The nature of isomorphous substituent influences the textural properties (pore size distribution) of the respective UTL zeolites.

Graphical abstract: Synthesis of isomorphously substituted extra-large pore UTL zeolites

Supplementary files

Article information

Article type
Paper
Submitted
20 Mar 2012
Accepted
14 Jun 2012
First published
14 Jun 2012

J. Mater. Chem., 2012,22, 15793-15803

Synthesis of isomorphously substituted extra-large pore UTL zeolites

M. V. Shamzhy, O. V. Shvets, M. V. Opanasenko, P. S. Yaremov, L. G. Sarkisyan, P. Chlubná, A. Zukal, V. R. Marthala, M. Hartmann and J. Čejka, J. Mater. Chem., 2012, 22, 15793 DOI: 10.1039/C2JM31725G

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Spotlight

Advertisements