Issue 48, 2012

General synthesis of xLi2MnO3·(1 − x)LiMn1/3Ni1/3Co1/3O2 nanomaterials by a molten-salt method: towards a high capacity and high power cathode for rechargeable lithium batteries

Abstract

Well-crystallized and high-performance xLi2MnO3·(1 − x)LiMn1/3Ni1/3Co1/3O2 (x = 0.3, 0.5, and 0.7) structurally integrated nanomaterials are prepared by a facile molten-salt strategy. The effects of heat-treatment temperature, time, and the molar ratio of KCl flux to reaction precursor on the particle size as well as the electrochemical properties are explored. Our results demonstrate that a 0.5Li2MnO3·0.5LiMn1/3Ni1/3Co1/3O2 electrode delivers a high reversible capacity of 313 mA h g−1 with significant enhancement in the initial coulombic efficiency (87%) at room temperature, exhibits superior rate capability and shows improved electrochemical properties over a wide temperature range, in particular at low temperature.

Graphical abstract: General synthesis of xLi2MnO3·(1 − x)LiMn1/3Ni1/3Co1/3O2 nanomaterials by a molten-salt method: towards a high capacity and high power cathode for rechargeable lithium batteries

Article information

Article type
Paper
Submitted
28 Jul 2012
Accepted
12 Oct 2012
First published
12 Oct 2012

J. Mater. Chem., 2012,22, 25380-25387

General synthesis of xLi2MnO3·(1 − x)LiMn1/3Ni1/3Co1/3O2 nanomaterials by a molten-salt method: towards a high capacity and high power cathode for rechargeable lithium batteries

J. Liu, L. Chen, M. Hou, F. Wang, R. Che and Y. Xia, J. Mater. Chem., 2012, 22, 25380 DOI: 10.1039/C2JM35026B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Spotlight

Advertisements