Issue 26, 2013

Multiphoton photoelectron emission microscopy of single Au nanorods: combined experimental and theoretical study of rod morphology and dielectric environment on localized surface plasmon resonances

Abstract

Multiphoton photoelectron emission from individual Au nanorods deposited on indium tin oxide (ITO) substrates is studied via scanning photoionization microscopy, based on femtosecond laser excitation at frequencies near the rod longitudinal surface plasmon resonance (LSPR). The observed resonances in photoemission correlate strongly with plasmon resonances measured in dark field microscopy (DFM), thus establishing a novel scheme for wavelength-resolved study of plasmons in isolated metallic nanoparticles based on highly sensitive electron counting methods. In this work, we explore experimental and theoretical effects of (i) morphology and (ii) aspect ratio (AR) for longitudinal plasmon resonance behavior in Au nanorods. A quasilinear dependence between LSPR and aspect ratio (AR) is experimentally determined [Δλ ≈ +100(10) nm/AR unit] for Au nanorods on ITO, in excellent agreement with the first principles value from finite element computer modeling [Δλ = +108(5) nm/AR unit]. Interestingly, however, LSPR values for larger vs. smaller diameter rods (w ≈ 20 nm and 10 nm) are systematically red-shifted [ΔE ≈ −0.03(1) eV; Δλ ≈ +15(5) nm at λ ≈ 800 nm], indicating that electromagnetic retardation effects must also be considered for highest accuracy in LSPR position. To augment these results, the influence of the dielectric environment on the rod LSPR has been explored both experimentally and numerically. In particular, detailed finite-element simulations for ITO supported Au nanorods are found to yield plasmon resonances in near quantitative agreement (ΔE ≈ ±0.04 eV) with experiment, with residual differences arising from uncertainty in the refractive index of the ITO thin film. Furthermore, the results indicate that plasmon resonance predictions based on infinitely thick ITO substrates are reliable to a few meV for film thicknesses larger than approximately twice the rod width.

Graphical abstract: Multiphoton photoelectron emission microscopy of single Au nanorods: combined experimental and theoretical study of rod morphology and dielectric environment on localized surface plasmon resonances

Supplementary files

Article information

Article type
Paper
Submitted
06 Dec 2012
Accepted
28 Jan 2013
First published
31 Jan 2013

Phys. Chem. Chem. Phys., 2013,15, 10616-10627

Multiphoton photoelectron emission microscopy of single Au nanorods: combined experimental and theoretical study of rod morphology and dielectric environment on localized surface plasmon resonances

A. Grubisic, V. Schweikhard, T. A. Baker and D. J. Nesbitt, Phys. Chem. Chem. Phys., 2013, 15, 10616 DOI: 10.1039/C3CP44385J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements